BackgroundClinical information models (CIMs) enabling semantic interoperability are crucial for electronic health record (EHR) data use and reuse. Dual model methodology, which distinguishes the CIMs from the technical domain, could help enable the interoperability of EHRs at the knowledge level. How to help clinicians and domain experts discover CIMs from an open repository online to represent EHR data in a standard manner becomes important.ObjectiveThis study aimed to develop a retrieval method to identify CIMs online to represent EHR data.MethodsWe proposed a graphical retrieval method and validated its feasibility using an online CIM repository: openEHR Clinical Knowledge Manager (CKM). First, we represented CIMs (archetypes) using an extended Bayesian network. Then, an inference process was run in the network to discover relevant archetypes. In the evaluation, we defined three retrieval tasks (medication, laboratory test, and diagnosis) and compared our method with three typical retrieval methods (BM25F, simple Bayesian network, and CKM), using mean average precision (MAP), average precision (AP), and precision at 10 (P@10) as evaluation metrics.ResultsWe downloaded all available archetypes from the CKM. Then, the graphical model was applied to represent the archetypes as a four-level clinical resources network. The network consisted of 5513 nodes, including 3982 data element nodes, 504 concept nodes, 504 duplicated concept nodes, and 523 archetype nodes, as well as 9867 edges. The results showed that our method achieved the best MAP (MAP=0.32), and the AP was almost equal across different retrieval tasks (AP=0.35, 0.31, and 0.30, respectively). In the diagnosis retrieval task, our method could successfully identify the models covering “diagnostic reports,” “problem list,” “patients background,” “clinical decision,” etc, as well as models that other retrieval methods could not find, such as “problems and diagnoses.”ConclusionsThe graphical retrieval method we propose is an effective approach to meet the uncertainty of finding CIMs. Our method can help clinicians and domain experts identify CIMs to represent EHR data in a standard manner, enabling EHR data to be exchangeable and interoperable.
Read full abstract