This paper is concerned with the dynamics of a two-species reaction–diffusion–advection competition model subject to the no-flux boundary condition in a bounded domain. By the signs of the associated principal eigenvalues, we derive the existence and local stability of the trivial and semi-trivial steady-state solutions. Moreover, the nonexistence and existence of the coexistence steady-state solutions stemming from the two boundary steady states are obtained as well. In particular, we describe the feature of the coincidence of bifurcating coexistence steady-state solution branches. At the same time, the effect of advection on the stability of the bifurcating solution is also investigated, and our results suggest that the advection term may change the stability. Finally, we point out that the methods we applied here are mainly based on spectral analysis, perturbation theory, comparison principle, monotone theory, Lyapunov–Schmidt reduction, and bifurcation theory.
Read full abstract