Abstract

The effects of weak and strong advection on the dynamics of reaction-diffusion models have long been investigated. In contrast, the role of intermediate advection still remains poorly understood. This paper is devoted to studying a two-species competition model in a one-dimensional advective homogeneous environment, where the two species are identical except their diffusion rates and advection rates. Zhou (P. Zhou, On a Lotka-Volterra competition system: diffusion vs advection, Calc. Var. Partial Differential Equations, 55 (2016), Art. 137, 29 pp) considered the system under the no-flux boundary conditions. It is pointed that, in this paper, we focus on the case where the upstream end has the Neumann boundary condition and the downstream end has the hostile condition. By employing a new approach, we firstly determine necessary and sufficient conditions for the persistence of the corresponding single species model, in forms of the critical diffusion rate and critical advection rate. Furthermore, for the two-species model, we find that (i) the strategy of slower diffusion together with faster advection is always favorable; (ii) two species will also coexist when the faster advection with appropriate faster diffusion.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.