To satisfy the increasing necessity of contactless optical thermometry, utilizing both thermally coupled (TCLs) or non-thermally-coupled (NTCLs) energy levels of rare earth ions in novel phosphors has significant potential for devising the optical thermometers with high temperature sensitivity. Herein, a sequence of novel Yb3+,Er3+/Ho3+ doped NaLaTi2O6 (NLTO) phosphors were sintered using a high-temperature solid-state reaction approach. Structure, phase component and luminescence performance were identified in detail. Upon 980 nm near-infrared (NIR) excitation, the obtained materials presented typical Er3+/Ho3+ characteristic emission wavelengths in visible region, which include two green emission bands around 522 and 543 nm, as well as a weaker red band around 661 nm for Er3+ doped NLTO, a green emission band around 545 nm and a red band around 657 nm for Ho3+ doped NLTO. Besides, a unusual emission band around 757 nm of Ho3+ in visible edge region was also clearly found. The temperature sensing properties of representative NLTO:Yb3+,Er3+/Ho3+ samples were assessed based on the fluorescence intensity ratio (FIR) technique of TCLs or NTCLs energy levels. The maximal absolute sensitivity (Sa) and relative sensitivity (Sr) were determined to be 0.0374 K-1 (293 K) and 0.970% K-1 (293 K) by taking the FIR of NTCLs 2H11/2→4I15/2 and 4F9/2→4I15/2 transitions in NLTO:Yb3+,Er3+. Simultaneously, the maximal Sa and Sr were 0.0306 K-1 (573 K) and 0.776% K-1 (373 K) using the FIR of NTCLs 5F5→5I8 and 5F4,5S2→5I7 transitions in NLTO:Yb3+,Ho3+. Consequently, the temperature sensitivities above can be compared to reported results, which indicate that as-prepared materials have a promising application in optical temperature sensors field.
Read full abstract