Algal organic matter (AOM) is a potential precursor of disinfection byproducts (DBPs) in water treatment. It is a major challenge to identify macromolecular DBPs due to the diversity of AOM. In this study, Fourier transform ion cyclotron resonance mass spectrometry (FT-ICR/MS) was applied to diagnose the AOM diversity after algae removal by plasma oxidation and to recognize the macromolecular DBPs in subsequent chlorination. Significant removal of AOM released by M. aeruginosa, C. raciborskii, and A. spiroies was achieved by plasma oxidation, accompanied by decrease in the proportion of CHNO formulas and increase in CHO formulas. Without plasma treatment, chlorination generated approximately 2486 macromolecular carbonaceous DBPs (C-DBPs) and 1984 nitrogenous DBPs (N-DBPs), with C11HnOmClx and C18HnNmOzClx as the most abundant DBPs. The numbers of C-DBPs and N-DBPs decreased by 63.3% and 62.9%, respectively, if plasma treatment was applied prior to chlorination. Network computational analysis revealed that Cl substitution was the main formation pathway of AOM-derived DBP formation rather than HOCl addition. The precursors of macromolecular DBPs contained a characteristic atomic number of C and O (7 ≤ C ≤ 18; 3 ≤ O ≤ 11). This study firstly disclosed the relationship between AOM diversity and novel macromolecular DBPs during algae-laden water treatment.