Abstract

Dissolved organic matter (DOM) scavenges sulfate radicals (SO4•-), and SO4•--induced DOM transformations influence disinfection byproduct (DBP) formation when chlorination follows advanced oxidation processes (AOPs) used for pollutant destruction during water and wastewater treatment. Competition kinetics experiments and transient kinetics experiments were conducted in the presence of 19 DOM fractions. Second-order reaction rate constants for DOM reactions with SO4•- (kDOM,SO4•-) ranged from (6.38 ± 0.53) × 106 M-1 s-1 to (3.68 ± 0.34) × 107 MC-1 s-1. kDOM,SO4•- correlated with specific absorbance at 254 nm (SUVA254) (R2 = 0.78) or total antioxidant capacity (R2 = 0.78), suggesting that DOM with more aromatics and antioxidative moieties reacted faster with SO4•-. SO4•- exposure activated DBP precursors and increased carbonaceous DBP (C-DBP) yields (e.g., trichloromethane, chloral hydrate, and 1,1,1-trichloropropanone) in humic acid and fulvic acid DOM fractions despite the great reduction in their organic carbon, chromophores, and fluorophores. Conversely, SO4•--induced reactions reduced nitrogenous DBP yields (e.g., dichloroacetonitrile and trichloronitromethane) in wastewater effluent organic matter and algal organic matter without forming more C-DBP precursors. DBP formation as a function of SO4•- exposure (concentration × time) provides guidance on optimization strategies for SO4•--based AOPs in realistic water matrices.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.