Optical-spin interfaces that enable the photoinitialization, coherent microwave manipulation, and optical read-out of ground state spins have been studied extensively in solid-state defects such as diamond nitrogen vacancy (NV) centers and are promising for quantum information science applications. Molecular quantum bits (qubits) offer many advantages over solid-state spin centers through synthetic control of their optical and spin properties and their scalability into well-defined multiqubit arrays. In this work, we report an optical-spin interface in an organic molecular qubit consisting of two luminescent tris(2,4,6-trichlorophenyl)methyl (TTM) radicals connected via the meta-positions of a phenyl linker. The triplet ground state of this system can be photoinitialized in its |T0⟩ state by shelving triplet populations as singlets through spin-selective excited-state intersystem crossing with 80% selectivity from |T+⟩ and |T-⟩. The fluorescence intensity in the triplet manifold is determined by the ground-state polarization, and we show successful optical read-out of the ground-state spin following microwave manipulations by fluorescence-detected magnetic resonance spectroscopy. At 85 K, the lifetime of the polarized ground state is 45 ± 3 μs, and the ground state phase memory time is Tm = 5.9 ± 0.1 μs, which increases to 26.8 ± 1.6 μs at 5 K. These results show that luminescent diradicals with triplet ground states can serve as optically addressable molecular qubits with long spin coherence times, which marks an important step toward the rational design of spin-optical interfaces in organic materials.
Read full abstract