s-Triazine herbicides (atrazine, ametryn) are groundwater contaminants which may undergo microbial hydrolysis. Previously, inverse nitrogen isotope effects in atrazine degradation by Arthrobacter aurescens TC1 (i) delivered highly characteristic (13C/12C, 15N/14N) fractionation trends for pathway identification and (ii) suggested that the s-triazine ring nitrogen was protonated in the enzyme s-triazine hydrolase (TrzN) where (iii) TrzN crystal structure and mutagenesis indicated H+-transfer from the residue E241. This study tested the general validity of these conclusions for atrazine and ametryn with purified TrzN and a TrzN-E241Q site-directed mutant. TrzN-E241Q lacked activity with ametryn; otherwise, degradation consistently showed normal carbon isotope effects (εcarbon=-5.0‰±0.2‰ (atrazine/TrzN), εcarbon=-4.2‰±0.5‰ (atrazine/TrzN-E241Q), εcarbon=-2.4‰±0.3‰ (ametryn/TrzN)) and inverse nitrogen isotope effects (εnitrogen=2.5‰±0.1‰ (atrazine/TrzN), εnitrogen=2.1‰±0.3‰ (atrazine/TrzN-E241Q), εnitrogen=3.6‰±0.4‰ (ametryn/TrzN)). Surprisingly, TrzN-E241Q therefore still activated substrates through protonation implicating another proton donor besides E241. Sulfur isotope effects were larger in enzymatic (εsulfur=-14.7‰±1.0‰, ametryn/TrzN) than in acidic ametryn hydrolysis (εsulfur=-0.2‰±0.0‰, pH 1.75), indicating rate-determining C-S bond cleavage in TrzN. Our results highlight a robust inverse 15N/14N fractionation pattern for identifying microbial s-triazine hydrolysis in the environment caused by multiple protonation options in TrzN.
Read full abstract