At present, the soil of Chinese greenhouses is experiencing severe nitrogen input in the form of fertilizer, which will cause damage to the soil environment and restrict crop growth in the long run. The response of potential functions of microorganisms as drivers of nutrient cycling and material transformation to nitrogen enrichment has rarely been reported in northern vegetable planting systems. Therefore, we set up four cucumber pot experiments with different nitrogen addition rates (0, 258, 516, and 1032 kg N ha−1 yr−1) in the greenhouse. Bacterial and fungal communities were detected by 16S and ITS rRNA gene sequencing, and bacterial and fungal functional groups were predicted using the FAPROTAX and FUNGuild databases. The findings showed that nitrogen addition induced soil acidification (a decrease of 0.25–1.63 units) significantly reduced microbial diversity and changed the community composition of bacteria and fungi. The relative abundance of bacterial functional groups associated with the nitrogen cycle increased significantly when medium and high levels of nitrogen were added. Conversely, the bacterial functional groups involved in the carbon cycle exhibited the opposite pattern. In this study, NO3− and soil pH were the main factors affecting the soil microbial community and its functional groups. Our results highlight that hydrocarbon degradation and saprophytic fungi may play key roles in yield formation during cucumber cultivation in northern solar greenhouses. In general, adopting a fertilization strategy that ensures low-medium nitrogen availability can contribute to the sustainable progress of facility agriculture.
Read full abstract