Abstract

We explored the impacts of nitrogen (N) inputs and the rhizosphere effect on the properties of rhizosphere and bulk soils in a salinized grassland in Northern Shanxi under N addition rates of 0, 1, 2, 4, 8, 16, 24 and 32 g N·m-2·a-1. The results showed that N addition significantly decreased soil pH, but significantly increased Ca2+, NO3--N and inorganic nitrogen contents in rhizosphere and bulk soil. With the increases of N addition rates, the contents of Ca2+, NO3--N, inorganic nitrogen in rhizosphere and bulk soils and total nitrogen in rhizosphere soil increased gradually, whereas the contents of Na+, K+, Mg2+, NH4+-N and amino acid in rhizosphere soil, and total nitrogen in bulk soil first increased and then decreased. Results of the principal component analysis showed that the responses of soil properties to low (≤8 g·m-2·a-1) and high nitrogen addition rates (>8 g·m-2·a-1) were significantly different. Compared with bulk soil, soil pH, the contents of organic acids and amino acids in rhizosphere soil were significantly lower by 0.71 units, 44.3% and 9.8%, respectively, while the contents of K+, Ca2+, Mg2+, NH4+-N, inorganic nitrogen, total carbon and total nitrogen in rhizosphere soil were significantly higher by 51.0%, 47.6%, 20.8%, 215.5%, 139.3%, 31.7% and 65.3%, respectively. These results indicated that rhizosphere effect on soil properties was stronger than that of nitrogen addition.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.