Herein, a simple-functionalization method is described to prepare the oleylamine functionalized non-aqueous version of onion-like nanocarbons (ONC-OA), where ONC was isolated from the waste pollutant soot exhausted from the diesel engine. The surface group analysis of ONC-OA has been investigated via Nuclear Magnetic Resonance and X-ray Photoelectron Spectroscopy. ONC-OA shows blue fluorescence with a quantum yield of ∼6% in tetrahydrofuran (THF). The fluorescence-based sensing applications of ONC-OA has been investigated for selective sensing of toxic aromatic nitro-phenols compounds (para-nitro, dinitro, and trinitro phenols) from the tested many nitro organic compounds. Based on the limit of detection values, ONC-OA shows much better results for tri-nitro phenol compared to di and mono nitrophenol. To understand the quenching mechanism, a time-resolved photoluminescence analysis of the sensor with and without the addition of quenchers is performed. The effective lowering in fluorescence lifetime of the sensor after the addition of quenchers concludes that the quenching observed is majorly due to the Förster Resonance Energy Transfer (FRET) mechanism. The real-life application of ONC-OA was analyzed by external spiking of N-PhOHs in soil samples.