To investigate whether cardiac sodium channels have dihydropyridine (DHP) receptors we studied the effects of the optically pure (greater than 95%) enantiomers of the DHPs PN200-110 and BAY-K 8644 and the racemic DHP nitrendipine (NTD). Whole cell and single-channel sodium currents were recorded from cultured ventricular cells of neonatal rats using the patch-clamp method. NTD reduced cardiac sodium currents in a voltage-dependent manner. Inhibitory effects were due to an increase in traces without activity. The unit conductance remained unchanged. At negative holding potentials, NTD transiently increased the probability of channel opening. Both (+) and (-) PN 200-110 blocked sodium channels, although the (-) isomer was about one order of magnitude less effective. The blocking effects were voltage dependent. (+) BAY-K 8644 had similar blocking effects. (-) BAY-K 8644 produced an increase in sodium currents due to an increased frequency of channel openings and a marked prolongation of open time without any significant change in unit conductance. The DHPs have effects on cardiac sodium whole cell and single-channel currents that appear identical to and are as stereospecific as their effects on cardiac calcium currents, although the concentrations required are larger. In contrast the inwardly rectifying potassium channel (IK1) is unaffected by these DHPs. We conclude that functionally equivalent DHP receptors are present in cardiac sodium and calcium channels but not potassium channels and take this as evidence of the homology between sodium and calcium channels.
Read full abstract