There are large randomized clinical trials-SOLO-1 (Olaparib Maintenance Monotherapy in Patients With BRCA Mutated Ovarian Cancer Following First Line Platinum Based Chemotherapy [December 2018]), PRIMA (A Study of Niraparib Maintenance Treatment in Patients With Advanced Ovarian Cancer Following Response on Front-Line Platinum-Based Chemotherapy [September 2019]), and PAOLA-1 (Platine, Avastin and Olaparib in 1st Line [December 2019])-reporting positive efficacy results for maintenance regimens for women with primary, advanced epithelial ovarian cancer. The findings resulted in approval by the US Food and Drug Administration of the treatments studied as of May 2020. However, there are pressing economic considerations given the many eligible patients and substantial associated costs. To evaluate the cost-effectiveness of maintenance strategies for patients with (1) a BRCA variant, (2) homologous recombination deficiency without a BRCA variant, or (3) homologous recombination proficiency. In this economic evaluation of the US health care sector using simulated patients with primary epithelial ovarian cancer, 3 decision trees were developed, one for each molecular signature. The maintenance strategies evaluated were olaparib (SOLO-1), olaparib-bevacizumab (PAOLA-1), bevacizumab (PAOLA-1), and niraparib (PRIMA). Base case 1 assessed olaparib, olaparib-bevacizumab, bevacizumab, and niraparib vs observation of a patient with a BRCA variant. Base case 2 assessed olaparib-bevacizumab, bevacizumab, and niraparib vs observation in a patient with homologous recombination deficiency without a BRCA variant. Base case 3 assessed olaparib-bevacizumab, bevacizumab, and niraparib vs observation in a patient with homologous recombination proficiency. The time horizon was 24 months. Costs were estimated from Medicare claims, wholesale acquisition prices, and published sources. Probabilistic sensitivity analyses with microsimulation were then conducted to account for uncertainty and assess model stability. One-way sensitivity analyses were also performed. The study was performed from January through June 2020. Incremental cost-effectiveness ratios (ICERs) in US dollars per progression-free life-year saved (PF-LYS). Assuming a willingness-to-pay threshold of $100 000/PF-LYS, none of the drugs could be considered cost-effective compared with observation. In the case of a patient with a BRCA variant, olaparib was the most cost-effective (ICER, $186 777/PF-LYS). The third-party payer price per month of olaparib would need to be reduced from approximately $17 000 to $9000 to be considered cost-effective. Olaparib-bevacizumab was the most cost-effective in the case of a patient with homologous recombination deficiency without a BRCA variant (ICER, $629 347/PF-LYS), and bevacizumab was the most cost-effective in the case of patient with homologous recombination proficiency (ICER, $557 865/PF-LYS). Even at a price of $0 per month, niraparib could not be considered cost-effective as a maintenance strategy for patients with homologous recombination proficiency. The findings of this study suggest that, at current costs, maintenance therapy for primary ovarian cancer is not cost-effective, regardless of molecular signature. For certain therapies, lowering the drug price alone may not make them cost-effective.
Read full abstract