Originating in the work of A.M. Semikhatov and D. Adamović, inverse reductions are embeddings involving W-algebras corresponding to the same Lie algebra but different nilpotent orbits. Here, we show that an inverse reduction embedding between the affine sln+1\\documentclass[12pt]{minimal} \\usepackage{amsmath} \\usepackage{wasysym} \\usepackage{amsfonts} \\usepackage{amssymb} \\usepackage{amsbsy} \\usepackage{mathrsfs} \\usepackage{upgreek} \\setlength{\\oddsidemargin}{-69pt} \\begin{document}$$\\mathfrak {sl}_{n+1}$$\\end{document} vertex operator algebra and the minimal sln+1\\documentclass[12pt]{minimal} \\usepackage{amsmath} \\usepackage{wasysym} \\usepackage{amsfonts} \\usepackage{amssymb} \\usepackage{amsbsy} \\usepackage{mathrsfs} \\usepackage{upgreek} \\setlength{\\oddsidemargin}{-69pt} \\begin{document}$$\\mathfrak {sl}_{n+1}$$\\end{document} W-algebra exists. This generalises the realisations for n=1,2\\documentclass[12pt]{minimal} \\usepackage{amsmath} \\usepackage{wasysym} \\usepackage{amsfonts} \\usepackage{amssymb} \\usepackage{amsbsy} \\usepackage{mathrsfs} \\usepackage{upgreek} \\setlength{\\oddsidemargin}{-69pt} \\begin{document}$$n=1,2$$\\end{document} in Adamović (Commun Math Phys 366:1025–1067, 2019), Adamović (Math Ann 1–44, 2023). A similar argument is then used to show that inverse reduction embeddings exists between all hook-type sln+1\\documentclass[12pt]{minimal} \\usepackage{amsmath} \\usepackage{wasysym} \\usepackage{amsfonts} \\usepackage{amssymb} \\usepackage{amsbsy} \\usepackage{mathrsfs} \\usepackage{upgreek} \\setlength{\\oddsidemargin}{-69pt} \\begin{document}$$\\mathfrak {sl}_{n+1}$$\\end{document} W-algebras, which includes the principal/regular, subregular, minimal sln+1\\documentclass[12pt]{minimal} \\usepackage{amsmath} \\usepackage{wasysym} \\usepackage{amsfonts} \\usepackage{amssymb} \\usepackage{amsbsy} \\usepackage{mathrsfs} \\usepackage{upgreek} \\setlength{\\oddsidemargin}{-69pt} \\begin{document}$$\\mathfrak {sl}_{n+1}$$\\end{document} W-algebras, and the affine sln+1\\documentclass[12pt]{minimal} \\usepackage{amsmath} \\usepackage{wasysym} \\usepackage{amsfonts} \\usepackage{amssymb} \\usepackage{amsbsy} \\usepackage{mathrsfs} \\usepackage{upgreek} \\setlength{\\oddsidemargin}{-69pt} \\begin{document}$$\\mathfrak {sl}_{n+1}$$\\end{document} vertex operator algebra. This generalises the regular-to-subregular inverse reduction of Fehily (Commun Contemp Math 2250049, 2022), and similarly uses free-field realisations and their associated screening operators.