Abstract
We provide an explicit combinatorial description of highest weights of simple highest weight modules over the simple affine vertex algebra Lκ(sln+1) with n∈N of admissible level κ. For admissible simple highest weight modules corresponding to the principal, subregular and maximal parabolic nilpotent orbits we give a realization using the Gelfand–Tsetlin theory, which also allows us to obtain a realization of certain classes of simple admissible sl2-induced modules in these orbits. In particular, simple admissible sl2-induced modules are fully classified for the principal nilpotent orbit.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.