Reciprocal selection between symbiotic organisms and their hosts can generate variations in local adaptation between them. Symbionts often form species complexes with lineages partially adapted to various hosts. However, it is unclear how interactions among these lineages influences geographic variation in the extent of host-symbiont local adaptation. We addressed this shortcoming with experiments on burying beetles Nicrophorus vespilloides and their specialist phoretic mite Poecilochirus carabi in two adjacent woodlands. Burying beetles transport these mites to vertebrate carrion upon which they both reproduce. P. carabi appears to be a species complex, with distinct lineages that specialise on breeding alongside different Nicrophorus species. We found that in one wood (Gamlingay Woods), N. vespilloides carries a mixture of mite lineages, with each lineage corresponding to one of the four Nicrophorus species that inhabits this wood. However, two burying beetle species coexist in neighbouring Waresley Woods and here N. vespilloides predominantly carries the mite lineage that favours N. vespilloides. Mite lineage mixing alters the degree of local adaptation for both N. vespilloides and the P. carabi mites, affecting reproductive success variably across different woodlands. In Gamlingay, mite lineage mixing reduced N. vespilloides reproductive success, while experimentally purifying mites lineage enhanced it. The near pure lineage of vespilloides mites negligibly affected Waresley N. vespilloides. Mite reproductive success varied with host specificity: Gamlingay mites had greatest reproductive success on Gamlingay beetles, and performed less well with Waresley beetles. By contrast, Waresley mites had consistent reproductive success, regardless of beetle's woodland of origin. We conclude that there is some evidence that N. vespilloides and its specific mite lineage have coadapted. However, neither N. vespilloides nor its mite lineage adapted to breed alongside other mite lineages. This, we suggest, causes variation between Waresley and Gaminglay Woods in the extent of local adaptation between N. vespilloides beetles and their P. carabi mites.