Properties of neutron-rich $^{22}$C are studied using the mean-field approach with Skyrme energy density functionals. Its weak binding and large total reaction cross section, which are suggested by recent experiments, are simulated by modifying the central part of Skyrme potential. Calculating $E1$ strength distribution by using the random-phase approximation, we investigate developments of low-lying electric dipole ($E1$) strength and a contribution of core excitations of $^{20}$C. As the neutron Fermi level approaches the zero energy threshold ($\varepsilon_F >\sim -1$ MeV), we find that the low-lying $E1$ strength exceeds the energy-weighted cluster sum rule, which indicates an importance of the core excitations with the $1d_{5/2}$ orbit.