Abstract

Properties of neutron-rich $^{22}$C are studied using the mean-field approach with Skyrme energy density functionals. Its weak binding and large total reaction cross section, which are suggested by recent experiments, are simulated by modifying the central part of Skyrme potential. Calculating $E1$ strength distribution by using the random-phase approximation, we investigate developments of low-lying electric dipole ($E1$) strength and a contribution of core excitations of $^{20}$C. As the neutron Fermi level approaches the zero energy threshold ($\varepsilon_F >\sim -1$ MeV), we find that the low-lying $E1$ strength exceeds the energy-weighted cluster sum rule, which indicates an importance of the core excitations with the $1d_{5/2}$ orbit.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.