Monte Carlo simulations were carried out to compare performance of a 252Cf neutron and a 14-MeV neutron-based prompt γ-ray neutron activation analysis (PGNAA) system with that of the 2.8-MeV neutron-based PGNAA system at King Fahd University of Petroleum and Minerals (KFUPM), Dhahran, Saudi Arabia. Since the energy of neutron beam used in the KFUPM PGNAA system is very close to that produced by a DD neutron generator, performance comparison between a DD and a DT neutron generator-based PGNAA system is highly desired. For the sake of comparison, the calculations were carried out for the PGNAA system with geometry similar to the KFUPM PGNAA system. These calculations were required to determine improvement in performance of the KFUPM PGNAA system if its 2.8-MeV neutron source is replaced by a 252Cf neutron source or a 14-MeV neutron source. Results of the calculations revealed that the geometry of the 252Cf neutron and the 2.8-MeV neutron-based PGNAA system are not significantly different but the geometry of the 14-MeV neutron-based system is significantly different from that of the 2.8-MeV neutron-based PGNAA system. Accordingly, the prompt γ-ray yields from the 252Cf neutron and the 2.8-MeV neutron-based PGNAA system is comparable but prompt γ-ray yields from 14-MeV neutron-based PGNAA system are about three times smaller than that from the 2.8-MeV neutron-based PGNAA system. This study has shown that performance of the 252Cf neutron-based PGNAA system is comparable with that of the 2.8-MeV neutron-based PGNAA system but the performance of the 14-MeV neutron-based PGNAA system is poorer than that of the 2.8-MeV neutron-based PGNAA system.
Read full abstract