This paper takes into account a neuron network model in which the excitatory and the inhibitory Rulkov neurons interact each other through excitatory and inhibitory chemical coupling, respectively. Firstly, for two or more identical or non-identical Rulkov neurons, the existence conditions of the synchronization manifold of the fixed points are investigated, which have received less attention over the past decades. Secondly, the master stability equation of the arbitrarily connected neuron network under the existence conditions of the synchronization manifold is discussed. Thirdly, taking three identical Rulkov neurons as an example, some new results are presented: (1) topological structures that can make the synchronization manifold exist are given, (2) the stability of synchronization when different parameters change is discussed, and (3) the roles of the control parameters, the ratio, as well as the size of the coupling strength and sigmoid function are analyzed. Finally, for the chemical coupling between two non-identical neurons, the transversal system is given and the effect of two coupling strengths on synchronization is analyzed.