Abstract

The use of Multivariate Granger Causality (MVGC) in estimating directed Blood-Oxygen-Level- Dependant (BOLD) connectivity is still controversial. This is mostly due to the short data Ienghts typically available in func- tional MRI (fMRI) acquisitions, to the very nature of the BOLD acquisition strategy (which yields extremely low signal- to-noise-ratio) and importantly to the fact that neuronal activi- ty is convolved with a slow-varying haemodynamic response function (HRF) which therefore generates a temporal confound which is arduous to account for when basing MVGC estimates on vector autoregressive models (VAR). In this paper, we em- ploy realistic complex network models based on Izhikevich neuronal populations, interlinked by realistic neuronal fiber bundles which exert compounded directed influences and cas- cade into Baloon-model-like neurovascular coupling, to explore and validate the MVGC approach to directed connectivity es- timation in realistic fMRI conditions and in a complex directed network setting. In particular, we show in silico that the top 1 percentile of a BOLD connectivity matrix estimated with MVGC from BOLD data similar to the one provided by the Human Connectome Project (HCP) has a Positive Predictive Value very close to 1, hence corroborating the evidence that the "strongest" connections can be safely studied with this method in fMRI.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.