Epilepsy is a neurological ailment in which there is a disturbance in the nerve cell activity of the brain, causing recurrent seizures. The electroencephalogram (EEG) signal is widely used as a diagnostic modality to detect epilepsy ailment. The automated detection of epilepsy using wearable EEG sensor data recorded during various physical activities is interesting for continuous monitoring of brain health. This paper proposes a time–frequency (TF) domain machine learning (ML) approach for the automated detection of epilepsy using wearable sensor-based EEG signals. The Gaussian window-based Stockwell transform (GWST) is employed to evaluate the TF matrix from the EEG signal. The features such as the L1-norm and the Shannon entropy are extracted from the TF matrix of the EEG signal. The ML and deep learning (DL) models are employed to detect epilepsy using the TF domain features of EEG signals. The publicly available database containing wearable sensor-based EEG signals recorded from the subjects while performing different physical activities is used to evaluate the performance of the proposed approach. The results show that the random forest (RF) classifier coupled with GWST domain features of EEG signals has obtained an overall accuracy value of 90.74% for detecting epilepsy with hold-out validation using the EEG signals from different physical activity cases. For the 10-fold cross-validation (CV) case, the GWST domain features of EEG signal and multi-layer long short-term memory (LSTM) classifier have produced the average accuracy value of 74.44%. For jogging, running, and idle sitting activities, the GWST-based TF domain entropy features coupled with the multi-layer LSTM model have obtained accuracy values of 82.72%, 82.41%, and 87.30%, respectively. The proposed approach has achieved higher classification accuracy than existing methods to detect epilepsy using wearable sensor-based EEG signals using a 10-fold CV strategy. The suggested approach is compared with existing methods to classify seizure and seizure-free classes using resting-state EEG signals.
Read full abstract