Abstract
Brain tumors are critical neurological ailments caused by uncontrolled cell growth in the brain or skull, often leading to death. An increasing patient longevity rate requires prompt detection; however, the complexities of brain tissue make early diagnosis challenging. Hence, automated tools are necessary to aid healthcare professionals. This study is particularly aimed at improving the efficacy of computerized brain tumor detection in a clinical setting through a deep learning model. Hence, a novel thresholding-based MRI image segmentation approach with a transfer learning model based on contour (ContourTL-Net) is suggested to facilitate the clinical detection of brain malignancies at an initial phase. The model utilizes contour-based analysis, which is critical for object detection, precise segmentation, and capturing subtle variations in tumor morphology. The model employs a VGG-16 architecture priorly trained on the "ImageNet" collection for feature extraction and categorization. The model is designed to utilize its ten nontrainable and three trainable convolutional layers and three dropout layers. The proposed ContourTL-Net model is evaluated on two benchmark datasets in four ways, among which an unseen case is considered as the clinical aspect. Validating a deep learning model on unseen data is crucial to determine the model's generalization capability, domain adaptation, robustness, and real-world applicability. Here, the presented model's outcomes demonstrate a highly accurate classification of the unseen data, achieving a perfect sensitivity and negative predictive value (NPV) of 100%, 98.60% specificity, 99.12% precision, 99.56% F1-score, and 99.46% accuracy. Additionally, the outcomes of the suggested model are compared with state-of-the-art methodologies to further enhance its effectiveness. The proposed solution outperforms the existing solutions in both seen and unseen data, with the potential to significantly improve brain tumor detection efficiency and accuracy, leading to earlier diagnoses and improved patient outcomes.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.