Gene expression profiling of metastatic brain tumors from primary lung adenocarcinoma, using a 17k-expression array, revealed that 1561 genes were consistently altered. Further functional classification placed the genes into seven categories: cell cycle and DNA damage repair, apoptosis, signal transduction molecules, transcription factors, invasion and metastasis, adhesion, and angiogenesis. Genes involved in apoptosis, such as caspase 2 (CASP2), transforming growth factor-beta inducible early gene (TIEG), and neuroprotective heat shock protein 70 (Hsp70) were underexpressed in metastatic brain tumors. Alterations in Rho GTPases (ARHGAP26, ARHGAP1), as well as down-regulation of the metastasis suppressor gene KiSS-1 were noted, which may contribute to tumor aggression. Overexpression of the invasion-related gene neurofibromatosis 1 (NF1), and angiogenesis-related genes vascular endothelial growth factor-B (VEGF-B) and placental growth factor (PGF) was also evidenced. Brain-specific angiogenesis inhibitors 1 and 3 (BAI1 and BAI3) were underexpressed as well. Examination of cell-adhesion and migration-related genes revealed an increased expression of integrins and extracellular matrices collagen and laminin. The study also showed alterations in p53 protein-associated genes, among these increased gene expression of p53, up-regulation of Reprimo or candidate mediator of the p53-dependent G2-arrest, down-regulation of p53-regulated apoptosis-inducing protein 1 (p53AIP1), decreased expression of tumor protein inducible nuclear protein 1 (p53DINP1), and down-regulation of Mdm4 (MDMX). The results demonstrated that genes involved in adhesion, motility, and angiogenesis were consistently up-regulated in metastatic brain tumors, while genes involved in apoptosis, neuroprotection, and suppression of angiogenesis were markedly down-regulated, collectively making these cancer cells prone to metastasis.
Read full abstract