This cross-sectional study examines the Doi-Alshoumer PCOS clinical phenotype classification in relation to measured clinical and biochemical characteristics of women with polycystic ovary syndrome (PCOS). Two cohorts of women (Kuwait and Rotterdam) diagnosed with PCOS (FAI > 4.5%) were examined. These phenotypes were created using neuroendocrine dysfunction (IRMA LH/FSH ratio > 1 or LH > 6 IU/L) and menstrual cycle status (oligo/amenorrhea) to create three phenotypes: (A) neuroendocrine dysfunction and oligo/amenorrhea, (B) without neuroendocrine dysfunction but with oligo/amenorrhea, and (C) without neuroendocrine dysfunction and with regular cycles. These phenotypes were compared in terms of hormonal, biochemical, and anthropometric measures. The three suggested phenotypes (A, B, and C) were shown to be sufficiently distinct in terms of hormonal, biochemical, and anthropometric measures. Patients who were classified as phenotype A had neuroendocrine dysfunction, excess LH (and LH/FSH ratio), irregular cycles, excess A4, infertility, excess T, highest FAI and E2, and excess 17αOHPG when compared to the other phenotypes. Patients classified as phenotype B had irregular cycles, no neuroendocrine dysfunction, obesity, acanthosis nigricans, and insulin resistance. Lastly, patients classified as phenotype C had regular cycles, acne, hirsutism, excess P4, and the highest P4 to E2 molar ratio. The differences across phenotypes suggested distinct phenotypic expression of this syndrome, and the biochemical and clinical correlates of each phenotype are likely to be useful in the management of women with PCOS. These phenotypic criteria are distinct from criteria used for diagnosis.