Alzheimer's disease is a neurodegenerative disease that affects 44 million people worldwide, costing the world $605 billion to care for those affected not taking into account the physical and psychological costs for those who care for Alzheimer's patients. Dipentylammonium is a simple amine, which is structurally similar to a number of other identified sigma-1 receptor ligands with high affinities such as (2R-trans)-2butyl-5-heptylpyrrolidine, stearylamine and dodecylamine. This study investigates whether dipentylammonium is able to provide neuroprotective effects similar to those of sigma-1 receptor agonists such as PRE-084. Here we identify dipentylammonium as a sigma-1 receptor ligand with nanomolar affinity. We have found that micromolar concentrations of dipentylammonium protect from glutamate toxicity and prevent NFκB activation in HT-22 cells. Micromolar concentrations of dipentylammonium also protect stably expressing amyloid precursor protein Swedish mutant (APP/Swe) Neuro2A cells from toxicity induced by 150μM dopamine, suggesting that dipentylammonium may be useful for the treatment of Parkinsonian symptoms in Alzheimer's patients which are often associated with a more rapid deterioration of cognitive and physical ability. Finally, we found that low micromolar concentrations of dipentylammonium could out preform known sigma-1 receptor agonist PRE-084 in potentiating neurite outgrowth in Neuro2A cells, further suggesting that dipentylammonium has a potential use in the treatment of neurodegenerative diseases and could be acting through the sigma-1 receptor.
Read full abstract