Abstract

Actin cytoskeletal remodeling is essential for neurite outgrowth. LIM kinase 1 (LIMK1) regulates actin cytoskeletal remodeling by phosphorylating and inactivating cofilin, an actin filament-disassembling factor. In this study, we investigated the role of LIMK1 in calcium signal-induced neurite outgrowth. The calcium ionophore ionomycin induced LIMK1 activation and cofilin phosphorylation in Neuro-2a neuroblastoma cells. Knockdown of LIMK1 or expression of a kinase-dead mutant of LIMK1 suppressed ionomycin-induced cofilin phosphorylation and neurite outgrowth in Neuro-2a cells. Ionomycin-induced cofilin phosphorylation and neurite outgrowth were also blocked by KN-93, an inhibitor of Ca(2+)/calmodulin-dependent protein kinases (CaMKs), and STO-609, an inhibitor of CaMK kinase. An active form of CaMKIV but not CaMKI enhanced Thr-508 phosphorylation of LIMK1 and increased the kinase activity of LIMK1. Moreover, the active form of CaMKIV induced cofilin phosphorylation and neurite outgrowth, and a dominant negative form of CaMKIV suppressed ionomycin-induced neurite outgrowth. Taken together, our results suggest that LIMK1-mediated cofilin phosphorylation is critical for ionomycin-induced neurite outgrowth and that CaMKIV mediates ionomycin-induced LIMK1 activation.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.