The article is devoted to the description and analysis of a computer model that was created by D. S. Lebedev to demonstrate the possibility of a positive effect of fixation microsaccadic eye movements on the perception of small stimuli. The model is based on the assumption that in the process of fixing the gaze on the test stimulus, several “neural images” of this stimulus, resulting from microsaccades, are summed up in the brain. The series of summed neural images correspond to a sequence of shifted positions of the optical image of a stimulus on the retina. To accurately superimpose neural images on each other, a mechanism for compensating fixation saccadic microshifts is introduced into the model, identical to the mechanism that ensures the constancy of spatial perception in the case of macrosaccades, i.e. when turning the eyes to view large objects or scenes. The author of the model assessed the possibility of improving the quality of visible images by increasing the signal-to-noise ratio, which can be achieved using realistic spatiotemporal parameters of test images, neural noise and eye micromovements, selected bу means of literature analysis. Results of model calculation obtained for the specific parameters of the retina and eye movements showed that the considered summation mechanism with compensation for saccadic shifts can progressively improve the quality of visible test stimuli when the number of summed neural images increases to approximately seven or eight, after which the positive effect practically does not increase. In this article, based on the material of recordings of eye movements in relevant experiments, the degree of realism of this model is discussed.
Read full abstract