Abstract
Improper discharge of slag from mining will pollute the surrounding soil, thereby affecting the ecology and becoming an important global problem. The available copper (ACu) content in polluted soil is an important factor affecting plant growth and development. When investigating a large area of soil with ACu, manual sampling by points and inspection are mainly used, due to the heterogeneity of soil, the efficiency and accuracy are lower. The Unmanned aerial vehicle (UAV) equipped with a hyperspectral sensor as a remote sensing technology is widely used in soil indicator monitoring because of its rapid and convenience. Meanwhile, using the relationship between soil organic matter and available copper has the potential to predict available copper. In this study, we selected the study area with tailings area in the Jianghan Plain of China and used a UAV equipped with a hyperspectral sensor to predict ACu and soil organic matter (SOM) in the soil with two datasets. Firstly, 74 soil samples were collected in the study area, and the ACu and SOM of the soil samples were determined. Second, a hyperspectral image of the study area is obtained using a UAV equipped with a hyperspectral sensor. Thirdly, we combine hyperspectral data with competitive adaptive reweighted sampling (CARS) to obtain feature bands and utilize simulated annealing deep neural network (SA-DNN) to generate estimation models. Finally, maps of the distribution of ACu and SOM in the area were generated using the model. In two datasets, the model of ACu with R2 values both are 0.89, and R2 on the model of SOM is 0.89 and 0.88. The results show that the combination of UAV hyperspectral imagery with the SA-DNN model has good performance in the prediction of organic matter and available copper, which is helpful for soil environmental monitoring.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.