Abstract
In the field of agriculture, measuring the leaf area is crucial for the management of crops. Various techniques exist for this measurement, ranging from direct to indirect approaches and destructive to non-destructive techniques. The non-destructive approach is favored because it preserves the plant's integrity. Among these, several methods utilize leaf dimensions, such as width and length, to estimate leaf areas based on specific models that consider the unique shapes of leaves. Although this approach does not damage plants, it is labor-intensive, requiring manual measurements of leaf dimensions. In contrast, some indirect non-destructive techniques leveraging convolutional neural networks can predict leaf areas more swiftly and autonomously. In this paper, we propose a new direct method using 3D point clouds constructed by semantic RGB-D (Red Green Blue and Depth) images generated by a semantic segmentation neural network and RGB-D images. The key idea is that the leaf area is quantified by the count of points depicting the leaves. This method demonstrates high accuracy, with an R2 value of 0.98 and a RMSE (Root Mean Square Error) value of 3.05 cm2. Here, the neural network's role is to segregate leaves from other plant parts to accurately measure the leaf area represented by the point clouds, rather than predicting the total leaf area of the plant. This method is direct, precise, and non-invasive to sweet pepper plants, offering easy leaf area calculation. It can be implemented on laptops for manual use or integrated into robots for automated periodic leaf area assessments. This innovative method holds promise for advancing our understanding of plant responses to environmental changes. We verified the method's reliability and superior performance through experiments on individual leaves and whole plants.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.