A novel hierarchical coordination control strategy (HCCS) is offered to guarantee the stability of four-wheel drive electric vehicles (4WD-EVs) combining the Unscented Kalman filter (UKF). First, a dynamics model of the 4WD-EVs is established, and the UKF-based estimator of sideslip angle and yaw rate is constructed concurrently. Second, the equivalent cornering stiffness coefficients are jointly estimated to consider the impact of vehicle uncertainty parameters on the estimator design. Afterwards, a HCCS with two-level controller is presented. The sideslip angle and yaw rate are controlled by an adaptive backstepping-based yaw moment controller, and the computational burden is relieved by an improved adaptive neural dynamic surface control technology in the upper-level controller. Simultaneously, the optimal torque distribution controller of hub motors is developed to optimize the adhesion utilization ratio of tire in the lower-level controller. Finally, the proposed HCCS has shown effective improvement in the trajectory tracking capability and yaw stability of the 4WD-EVs under various maneuver conditions compared with the traditional Luenberger observer-based and the federal-cubature Kalman filter-based hierarchical controller.
Read full abstract