Abstract

This paper addresses a secure predictor-based neural dynamic surface control (SPNDSC) issue for a cyber–physical system in a nontriangular form suffering from both sensor and actuator deception attacks. To avoid the algebraic loop problem, only partial states are employed as input vectors of neural networks (NNs) for approximating unknown dynamics, and compensation terms are further developed to offset approximation errors from NNs. With introduction of nonlinear gain functions and attack compensators, adverse effects of an intelligent adversary are alleviated effectively. Furthermore, we present stability analysis and prove the ultimate boundedness of all signals in the closed-loop system. The effectiveness of the proposed control strategy is illustrated by two examples.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.