컴퓨터 네트워크의 확대 및 인터넷 이용의 급격한 증가에 따른 최근의 정보통신 기반구조는 컴퓨터 시스템의 네트워크를 통한 연결로 다양한 서비스를 제공하고 있다. 특히 인터넷은 개방형 구조를 가지고 있어 서비스 품질의 보장과 네트워크의 관리가 어렵고, 기반구조의 취약성으로 인하여 타인으로부터의 해킹 및 정보유출 둥의 위협으로부터 노출되어 있다. 보안 위협에 대한 능동적인 대처 및 침입 이후에 동일한 또는 유사한 유형의 사건 발생에 대해 실시간 대응할 수 있는 방법이 중요하게 되었으며 이러한 해결책으로서 침임 탐지 시스템에 대한 연구가 활발히 진행되고 있다. 본 논문에서는 지도학습 알고리즘이 의한 침입탐지 시스템의 성능을 향상시키기 위해서 불확실성을 해결하기 위한 방법인 퍼지를 적용한 뉴로-퍼지 모델의 이상 침입 탐지 시스템에 대해서 연구한다. 즉, 신경망 학습의 전달함수를 불확실성을 해결하기 위한 퍼지 멤버쉽 함수로 수정하여 지도학습을 수행하였다. 제안한 뉴로-퍼지기법을 DARPA 침입 데이터를 이용하여 오용 탐지의 한계성을 극복한 네트워크기반의 이상침입 탐지에 적용하여 성능을 검증하였다. By the help of expansion of computer network and rapid growth of Internet, the information infrastructure is now able to provide a wide range of services. Especially open architecture - the inherent nature of Internet - has not only got in the way of offering QoS service, managing networks, but also made the users vulnerable to both the threat of backing and the issue of information leak. Thus, people recognized the importance of both taking active, prompt and real-time action against intrusion threat, and at the same time, analyzing the similar patterns of in-trusion already known. There are now many researches underway on Intrusion Detection System(IDS). The paper carries research on the in-trusion detection system which hired supervised learning algorithm and Fuzzy membership function especially with Neuro-Fuzzy model in order to improve its performance. It modifies tansigmoid transfer function of Neural Networks into fuzzy membership function, so that it can reduce the uncertainty of anomaly intrusion detection. Finally, the fuzzy logic suggested here has been applied to a network-based anomaly intrusion detection system, tested against intrusion data offered by DARPA 2000 Intrusion Data Sets, and proven that it overcomes the shortcomings that Anomaly Intrusion Detection usually has.
Read full abstract