Data centers are a fundamental infrastructure in the Big-Data era, where applications and services demand a high amount of data and minimum response times. The interconnection network is an essential subsystem in the data center, as it must guarantee high communication bandwidth and low latency to the communication operations of applications, otherwise becoming the system bottleneck. Simulation is widely used to model the network functionality and to evaluate its performance under specific workloads. Apart from the network modeling, it is essential to characterize the end-nodes communication pattern, which will help identify bottlenecks and flaws in the network architecture. In previous works, we proposed the VEF traces framework: a set of tools to capture communication traffic of MPI-based applications and generate traffic traces used to feed network simulator tools. In this paper, we extend the VEF traces framework with new communication workloads such as deep-learning training applications and online data-intensive workloads.
Read full abstract