Efficient network management in optical backbone networks is essential to manage continuous traffic growth. To accommodate this growth, network operators need to upgrade their infrastructure at appropriate times. Given the cost constraint of upgrading the entire network at once, upgrading the network periodically in multiple batches is a more pragmatic approach to meet the growing demands. While multi-period, batch-upgrade strategies to increase network capacity from the conventional C band to C+L bands have been proposed, they did not consider so far the possibility to re-provision existing traffic. In this work, we investigate how to selectively re-provision connections from C band to L band during a batch upgrade. This is to ensure greater availability of C-band resources which can help to delay network upgrade and hence reduce upgrade cost, while limiting the number of disrupted connections in the network. This study proposes two re-provisioning strategies, namely, Budget-Based (BB) and Margin-Aware (MA) re-provisioning, which rely on the Quality of Transmission (QoT) of lightpaths. These strategies leverage the knowledge of Generalized Signal-to-Noise Ratio (GSNR) to choose which lightpaths to re-provision. We compare these strategies with a baseline distance-based strategy that uses path length to select and re-provision lightpaths. We also incorporate Machine Learning techniques for QoT estimation of lightpaths to reduce the computational time required for optical-path feasibility check. Numerical results show that, compared to distance-based strategy, BB and MA strategies reduce disruption by about 22% and 27%, respectively, in representative network topologies.
Read full abstract