Aza-fused aromatic π-conjugated networks are an important class of 2D graphitic analogs, which are generally constructed using aromatic precursors. Herein, the study describes a new synthetic approach and electrochemical properties of a self-exfoliating benzotristriazine 2D network (BTTN) constructed using aliphatic precursors, under relatively mild conditions. The obtained BTTN exhibits a nanodisc-like morphology, the self-exfoliation tendency of which is ascribed to the presence of structurally different macrocycles with high electronic repulsion between the layers. The benzotristriazine repeat units of BTTN is electroactive and holds higher carbon/nitrogen ratio when compared with the conventional graphitic aza-fused π-conjugated networks. The self-exfoliated BTTN nanodiscs show excellent electrochemical energy storage of 485 and 333 F g-1 at 1 A g-1 in three-electrode and two-electrode measurements, respectively. BTTN in a symmetric coin-cell architecture exhibits a high specific energy value of 46Wh kg-1 at a power density of 1kW kg-1 and shows excellent cyclic stability of 96% for 10000 and 90% for 30000 charge-discharge cycles at a higher current density of 5 A g-1, surpassing the device performance of most of the reported all-organic pseudocapacitive 2D networks.
Read full abstract