Abstract

Thermal interface materials (TIMs) are in desperate desire with the development of the modern electronic industry. An excellent TIM needs desired comprehensive properties including but not limited to high thermal conductivity, low Yong's modulus, lightweight, as well as low price. However, as is typically the case, those properties are naturally contradictory. To tackle such dilemmas, a strategy of construction high-performance TIM inspired by alveoli is proposed. The material design includes the self-alignment of graphite into 3D interconnected thermally conductive networks by polydimethylsiloxane beads (PBs) -the alveoli; and a small amount of liquid metal (LM) - capillary networks bridging the PBs and graphite network. Through the delicate structural regulation and the synergistic effect of the LM and solid graphite filler, superb thermal conductivity (9.98 ± 0.34W m-1 K-1) can be achieved. The light emitting diode (LED) application and their performance in the central processing unit (CPU) heat dispersion manifest the TIM developed in the work has stable thermal conductivity for long-term applications. The thermally conductive, soft, and lightweight composites are believed to be high-performance silicone bases TIMs for advanced electronics.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.