With the emergence of the Internet-of-Things (IoT) and seamless Internet connectivity, the need to process streaming data on real-time basis has become essential. However, the existing data stream management systems are not efficient in analyzing the network log big data for real-time anomaly detection. Further, the existing anomaly detection approaches are not proficient because they cannot be applied to networks, are computationally complex, and suffer from high false positives. Thus, in this paper a hybrid data processing model for network anomaly detection is proposed that leverages grey wolf optimization (GWO) and convolutional neural network (CNN). To enhance the capabilities of the proposed model, GWO and CNN learning approaches were enhanced with: 1) improved exploration, exploitation, and initial population generation abilities and 2) revamped dropout functionality, respectively. These extended variants are referred to as Improved-GWO (ImGWO) and Improved-CNN (ImCNN). The proposed model works in two phases for efficient network anomaly detection. In the first phase, ImGWO is used for feature selection in order to obtain an optimal trade-off between two objectives, i.e., reduced error rate and feature-set minimization. In the second phase, ImCNN is used for network anomaly classification. The efficacy of the proposed model is validated on benchmark (DARPA’98 and KDD’99) and synthetic datasets. The results obtained demonstrate that the proposed cloud-based anomaly detection model is superior in comparison to the other state-of-the-art models (used for network anomaly detection), in terms of accuracy, detection rate, false positive rate, and F-score. In average, the proposed model exhibits an overall improvement of 8.25%, 4.08%, and 3.62% in terms of detection rate, false positives, and accuracy, respectively; relative to standard GWO with CNN.
Read full abstract