The cardio-protection mechanisms of sevoflurane and propofol still remain unclear in patients undergoing coronary artery bypass grafting (CABG). We designed the present study to identify the optimal pathways through integrating differential co-expressed network (DCN)-based guilt by association (GBA) principle based on the expression data of E-GEOD-4386 downloaded from EMBL-EBI. Differentially expressed genes (DEGs) were firstly identified and then DCN and sub-DCN were established. The seed pathways were predicted through GBA principle using the area under the curve (AUC) for pathway categories, and the pathway terms with AUC >0.9 were defined as the seed pathways. KEGG pathway analysis was applied to the DEGs based on DAVIA to detect significant pathways. The final optimal pathways were identified based on the traditional pathway analysis and network-based pathway inference approach. There were 83 common, 99 sevoflurane-specific and 4 propofol-specific DEGs in the expression profile of artial samples. Finally, 8 and 4 pathway terms having the AUC >0.9 were identified and determined as the seed pathways in the propofol and sevoflurane group, respectively. TNF signaling pathway, NF-κB signaling pathway, as well as NOD-like receptor signaling pathway were the common optimal ones in these two groups. Only the pathway of cytokine-cytokine receptor interaction was unique to sevoflurane, and no pathway was specific to propofol. Our results suggested that sevoflurane and propofol might synergistically possess some cardio-protective properties in patients undergoing CABG.
Read full abstract