The seamless integration of technology for computing into everyday items and environments is known as pervasive computing. To protect against cyber threats and vulnerabilities, robust security mechanisms are necessary. Conventional security measures, including gateways and the use of encryption, may not be sufficient to address the unique challenges encountered in ubiquitous computing systems. But these techniques are still vital. In addition to the variety of devices, resource limitations, mobility needs, and the possibility of large-scale distributed attacks, these obstacles also include the potential for attack. Network virtualization, that abstracts and separates network facilities and functions, is a promising way to increasing security in pervasive computing deployments: it abstracts and isolates network resources and processes. Wireless communication play a significant part in the development of a digital infrastructure that is both resilient and trustworthy. The processes of dynamic resource allocation, isolation, and management of network bandwidth are made possible through the utilization of virtualization, leads to the proposal of Secure Wireless Virtual Resource Allocation and Authentication Algorithm(SWVRA3) to make the abstraction of the network's physical resources into virtualized entities By using network virtualization, pervasive computing applications and services can be secured with logically segregated virtual networks. The cross-contamination and security breaches can be reduced by this separation. Furthermore, flexible configuration, dynamic allocation of resources, and centralized virtual control are allowed by network visualization that improves threat incidence response, enforcement of policies, and security surveillance.