Abstract
We discuss several algorithms for solving a network optimization problem of simultaneous routing and bandwidth allocation in green networks in a decomposed way, based on the augmented Lagrangian. The problem is difficult due to the nonconvexity caused by binary routing variables. The chosen algorithms, which are several versions of the Multiplier Method, including the Alternating Direction Method of Multipliers (ADMM), have been implemented in Python and tested on several networks’ data. We derive theoretical formulations for the inequality constraints of the Bertsekas, Tatjewski and SALA methods, formulated originally for problems with equality constraints. We also introduce some modifications to the Bertsekas and Tatjewski methods, without which they do not work for an MINLP problem. The final comparison of the performance of these algorithms shows a significant advantage of the augmented Lagrangian algorithms, using decomposition for big problems. In our particular case of the simultaneous routing and bandwidth allocation problem, these algorithms seem to be the best choice.
Published Version (Free)
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.