Abstract

Lexicographic max-min (LMM) optimization is of considerable importance in many fairness-oriented applications. LMM problems can be reformulated in a way that allows to solve them by applying the standard lexicographic maximization algorithm. However, the reformulation introduces a large number of auxiliary variables and linear constraints, making the process computationally complex. In this paper, two approximation schemes for such a reformulation are presented, resulting in problem size reduction and significant performance gains. Their influence on the quality of the solution is shown in a series of computational experiments concerned with the fair network dimensioning and bandwidth allocation problem.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.