Enteric viruses, especially human rotaviruses present in aquatic environments, are microbial criteria in quality assessment of water resources. The present research aimed to investigate molecular monitoring of human rotavirus and efficacy evaluation of Isfahan water treatment plant (WTP) in the elimination of viruses. In total, 60 water samples were collected from different units of WTP. Zeta plus electropositive Virosorb cartridge filter and elution buffer was used for concentrating water samples. Enzyme-linked immunosorbent assay (ELISA) was used for detecting rotavirus antigen. Quantitative real-time reverse transcription PCR (qRT-PCR) with SYBR Green I fluorescent dye was performed for molecular detection of rotavirus. Multiplex nested reverse transcription-polymerase chain reaction (RT-PCR) was used for rotavirus G genotyping. Total coliform count varies from 102-103 CFU/mL in the raw water resources. Rotavirus antigen was detected in 17 samples (28.33%) by ELISA, and 13 samples (21.67%) were found positive by RT-PCR. These included 41.18% (7 cases) of raw water influent, 29.41% (5 cases) after sedimentation, 23.52% (4 cases) after ozonation, and 5.88% (1 case) after filtration in ELISA method. The highest number of rotaviruses was detected by qRT-PCR in autumn (46.15% (6 cases)). The commonest circulating G type in the sampling points was the mixed types, which was identified in 6 samples (46.15%), followed by non-typeable (23.07%), G3 (15.38%), G1 (7.69%), and G8 (7.69%), respectively. Despite the presence of rotavirus in raw water, after clarification and ozonation, filtration and treated water did not show the presence of rotavirus. The results of this study showed that multi-stage treatment has a positive effect on virus removal in WTP.
Read full abstract