Tetracycline (TC) in the water body poses a huge threat to the ecological environment. There is a great challenge to develop highly efficient, green, low-cost and reusable adsorbents for TC removal from saline water. Herein, metakaolin-based geopolymer microspheres (MM) modified by oleic acid were proposed for the enhanced adsorption of TC from saline water. Experimental and characterization results showed that the introduction of oleic acid into the MM effectively adjusted the specific surface area, pore volume and zeta potential of the MM, thus accelerating the adsorption rate and enhancing the TC adsorption capacity of the MM. The adsorption process fitted well to the pseudo-second-order kinetic and Langmuir isothermal models. The Langmuir adsorption capacity of TC by the optimal MM, namely MM3 (0.3%, oleic acid), reached 645.7 mg·g−1 at 298 K, which was higher than many reported adsorbents. The adsorption process was endothermic and spontaneous. The MM3 had good adsorption performance of TC from saline water and regeneration performance. Moreover, the breakthrough curves of the MM3 in a column system were correlative with the Thomas and Yoon–Nelson models. The adsorption mechanisms of TC by the MM3 involved Van der Waals forces, electrostatic interactions, hydrogen–bonding interactions, and ion exchange.