Epstein-Barr virus-associated gastric cancer (EBVaGC) accounts for nearly 10% of gastric cancer. Cyclooxygenase-2 (COX-2) plays a crucial role in cancer progression. However, there is no experimental study on the regulation mechanism of EBV on COX-2 in EBVaGC. To understand more about the tumorigenic mechanism of EBVaGC, the study investigated the role of EBV encode latent membrane protein LMP1 and LMP2A in the regulation of COX-2. The expression of COX-2 was examined in EBVaGC and EBV negative gastric cancer (EBVnGC) cell lines. The plasmids were transfected in SGC7901 to overexpress LMP1/2A. Small interfering RNA (si-RNA) targeting LMP1/2A in GT38 and targeting TRAF2 in SGC7901 were used to detect the expression of COX-2. Furthermore, si-ERK1/2 and the MEK inhibitor PD0325901 were used to investigate whether p-ERK participate in the regulation of COX-2 in SGC7901. The overexpression of LMP1 or LMP2A in SGC7901 down-regulates both COX-2 and TRAF2 expression, and knockdown of LMP1 or LMP2A in GT38 resulted in a certain recovery of COX-2 and TRAF2 expression. Moreover, si-TRAF2 indicated that a sharp down-regulation of COX-2. And the decrease of p-ERK also mediates the inhibitory effect of LMP1 on COX-2. In summary, overexpression of LMP1 and LMP2A inhibits COX-2, which is mediated by a decrease of TRAF2, and p-ERK is involved in the inhibition of COX-2 by LMP1 in gastric cancer.
Read full abstract