BackgroundMultiple brain imaging studies of negative emotional bias in major depressive disorder (MDD) have used images of fearful facial expressions and focused on the amygdala and the prefrontal cortex. The results have, however, been inconsistent, potentially due to small sample sizes (typically N<50). It remains unclear if any alterations are a characteristic of current depression or of past experience of depression, and whether there are MDD-related changes in effective connectivity between the two brain regions. MethodsActivations and effective connectivity between the amygdala and dorsolateral prefrontal cortex (DLPFC) in response to fearful face stimuli were studied in a large population-based sample from Generation Scotland. Participants either had no history of MDD (N=664 in activation analyses, N=474 in connectivity analyses) or had a diagnosis of MDD during their lifetime (LMDD, N=290 in activation analyses, N=214 in connectivity analyses). The within-scanner task involved implicit facial emotion processing of neutral and fearful faces. ResultsCompared to controls, LMDD was associated with increased activations in left amygdala (PFWE=0.031,kE=4) and left DLPFC (PFWE=0.002,kE=33), increased mean bilateral amygdala activation (β=0.0715,P=0.0314), and increased inhibition from left amygdala to left DLPFC, all in response to fearful faces contrasted to baseline. Results did not appear to be attributable to depressive illness severity or antidepressant medication status at scan time. LimitationsMost studied participants had past rather than current depression, average severity of ongoing depression symptoms was low, and a substantial proportion of participants were receiving medication. The study was not longitudinal and the participants were only assessed a single time. ConclusionsLMDD is associated with hyperactivity of the amygdala and DLPFC, and with stronger amygdala to DLPFC inhibitory connectivity, all in response to fearful faces, unrelated to depression severity at scan time. These results help reduce inconsistency in past literature and suggest disruption of ‘bottom-up’ limbic-prefrontal effective connectivity in depression.