Abstract

BackgroundEmotional processing is a core cognitive process cutting across neuropsychiatric disorders. Understanding the neurophysiological features underlying depressive symptoms and their sensitivity to modulation is critical to modifying emotional bias. The subthalamic nucleus (STN), targeted in Parkinson’s disease, shows a late alpha desynchronization to affective stimuli. We targeted this alpha desynchronization using a novel stimulation protocol asking if brief alpha (10 Hz) frequency stimulation time-locked to unpleasant imagery might influence subjective emotion. MethodsA total of 27 patients with Parkinson’s disease were recruited. The first study tested patients (n = 16) on affective stimuli with STN local field potential recordings assessed bilaterally without stimulation. In the second study, patients (n = 24) were tested on two affective tasks comparing negative and neutral stimuli paired with acute right-STN stimulation, with one of the negative conditions stimulated briefly for 1 second at either 130 Hz or 10 Hz. The subjects rated valence and arousal of negative and neutral stimuli. ResultsWe confirmed greater alpha desynchronization in both negative and positive affect relative to neutral in the right STN. Using acute stimulation of the right STN, we show a critical interaction effect between ratings, stimulation, and frequency; alpha frequency stimulation increased the subjective pleasantness of negative imagery, particularly with ventromedial contacts. Higher depression scores were associated with a positive bias to 10-Hz but not 130-Hz stimulation. ConclusionsWe highlight the potential of brief alpha frequency subthalamic stimulation to reduce negative emotional bias. This finding provides mechanistic insights underlying subjective emotional valence and has implications for the management of depression using neuromodulation.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call