An algorithm was developed in order to segment and track brachytherapy needles inserted along oblique trajectories. Three-dimensional (3D) transrectal ultrasound (TRUS) images of the rigid rod simulating the needle inserted into the tissue-mimicking agar and chicken breast phantoms were obtained to test the accuracy of the algorithm under ideal conditions. Because the robot possesses high positioning and angulation accuracies, we used the robot as a "gold standard," and compared the results of algorithm segmentation to the values measured by the robot. Our testing results showed that the accuracy of the needle segmentation algorithm depends on the needle insertion distance into the 3D TRUS image and the angulations with respect to the TRUS transducer, e.g., at a 10 degrees insertion anglulation in agar phantoms, the error of the algorithm in determining the needle tip position was less than 1 mm when the insertion distance was greater than 15 mm. Near real-time needle tracking was achieved by scanning a small volume containing the needle. Our tests also showed that, the segmentation time was less than 60 ms, and the scanning time was less than 1.2 s, when the insertion distance into the 3D TRUS image was less than 55 mm. In our needle tracking tests in chicken breast phantoms, the errors in determining the needle orientation were less than 2 degrees in robot yaw and 0.7 degrees in robot pitch orientations, for up to 20 degrees needle insertion angles with the TRUS transducer in the horizontal plane when the needle insertion distance was greater than 15 mm.
Read full abstract