Passive seismic surveys have attracted interest for use in many geological and geotechnical applications in the past few decades, mainly in reconstructing models of near-surface properties. They are also of interest in the mineral exploration of shallow deposits where targets lay on or within the bedrock and are covered by loose sediments above. The goal of this article was to test the effectiveness of cheap methods to understand the cover thickness and its lateral variations, which is essential to map the top of the bedrock. We investigated the use of passive seismic surveys to retrieve Rayleigh surface waves and invert them by analyzing their dispersion to reconstruct near-surface shear-wave velocity profiles. Using readily available passive seismic sources is advantageous compared to using costly active sources. Passive seismic data acquired by geophones and DAS showed the potential and challenges of using different sensing technologies. We demonstrated an approach combining passive seismic interferometry and multichannel analysis of surface waves (MASW). Computed dispersion images from both geophone and DAS data provided an improved understanding of their usability for subsurface model building and factors affecting their quality. Some of these factors are related to the surrounding environment, present noise sources, acquisition setup, and the methods used in reconstructing the dispersion images and inverting them. Successful demonstration of MASW was achieved with a relatively short period of continuous recording using a 2D array of geophones at a mineral exploration site in the Pilbara region of Western Australia.
Read full abstract