The excellent performance of semiconductor nanocrystals as sensitizers for photothermal therapy (PTT) has attracted the attention of many researchers; however, they are hindered by limited bandwidth and complex synthesis. To overcome these limitations, starting with an initial determination of photothermal conductivity, we synthesized and designed molybdenum and Cys-MoO3−x nanoparticles (NPs) for use in the minimally invasive treatment of papillary thyroid carcinoma (PTC), as the NPs are coated only with cysteine molecules. The obtained Cys-MoO2 NPs were used as a PTT reaction drug for topical application to PTC cells. The use of near-infrared photoconductive PTT in combination with low-toxicity biological chemotherapy reached a 90% efficacy for cancer treatment in vitro. The conducted experiments intuitively demonstrate that non-toxic Cys-MoO2 NPs are lethal to the cancer cells under visual (VL, 405 nm) and near-infrared (NIR, 808 nm) laser irradiation and can be precisely controlled. Therefore, this study provides a powerful, safe, and easily modified NP platform for photo-triggered PTC elimination with broad application prospects. Assessment of the ideal damage range indicates a high degree of controllability, allowing the tumor to be precisely targeted while minimizing damage to the surrounding healthy tissue. In conclusion, this study provides a convenient, safe, and powerful NP platform for the near-infrared photo-controlled PTT of PTC cells, which has broad application prospects for the elimination of PTC and other types of cancer.
Read full abstract